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Abstract. To derive selection rules for different physical processes occurring in polymers 
and quasi-one-dimensional solids one has to determine the reduction coefficients for the 
Kronecker products of the irreducible representations of their symmetry groups, the line 
groups. This task is accomplished here and the coefficients are tabulated explicitly for all 
the line groups isogonal to C,, C,,, Cnh and SZn ( n  = 1 , 2 ,  . . .) point groups. 

1. Introduction 

Recent discoveries of exciting phenomena (Peierls transitions, doping-induced conduc- 
tivity jumps for up to 20 orders of magnitude, solitons, superconductivity, . . .) in some 
polymers and quasi-one-dimensional solids have attracted much attention (BariSiC 
et a1 1980, Bernasconi and Schneider 1981, Devreese et a1 1979, Seymour 1981). 
Symmetry properties of such systems thus become worth studying and so the line 
group theory has been developed. Together with the line groups (VujiEiC et a1 1977) 
and their unitary irreducible representations (reps) (BoioviC and BoioviC 1981, 
BoioviC and VujiEiC 1981, BoioviC et a1 1978) the magnetic line groups 
(DamnjanoviC and VujiEiC 1982) have been constructed; the applications include 
electron band structure (BoioviE et a1 1981), vibration spectra (RakoviC et a1 1982) 
and phase transition (DamnjanoviC 1981) studies. The next step should be derivation 
of selection rules for different physical processes in polymers (optical absorption, 
electron and neutron scattering, two-phonon Raman and infrared processes, . , ,). This 
task consists largely in reducing the Kronecker products of reps of line groups, and 
to that the present work is devoted. Thus a gap is filled in the literature in which 
only a few line groups have been studied (McCubbin 1975), in contrast to the 
comprehensive studies of the selection rules for the crystallographic space groups 
(Cracknell et a1 1979) and point groups (Fackler 1973). In this paper all the line 
groups isogonal to C,, C,,, Cnh and Sn are considered. 

$ Present address: University of California, Berkeley CA 94720, USA. 
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2. Methods of determining the reduction coefficients for the Kronecker products of 
reps of line groups 

Let us consider a transition of a polymer from the state ( i )  into the state If), induced 
by the perturbation v. If L is the line group of the polymer, the transition is forbidden 
unless the rep D, of L is contained in the decomposition (or Clebsch-Gordan) series 
of the Kronecker product of the reps D,  and D,. In other words, if 

D, 00, -2 n,,,D', (1) 

where a enumerates all the inequivalent reps of L, then (fluli>=O unless n, , , f fO.  
Hence our aim is to determine the reduction (or frequency) coefficients nu,,a, for all 
the reps of line groups. Since the line groups are usually made finite via Born-von 
Kirmhn cyclic boundary conditions, one can utilise the character expansion 

where ILl is the order of L and ( R ~ T )  is an element of L.  The required characters are 
easily deducible from the tables of BoioviC et a1 (1978) and Boiovif. and VujiEiC 
(1981). 

Nice structural features of the line groups (VujiEiC et a[  1977) provide a simpler, 
recursive method. One first derives noi,a for the reps of the Ln, line groups-which 
is not difficult, since they are all one-dimensional. Every other line group L treated 
here contains certain Ln, as an order-two subgroup, and the frequency coefficients 
of L are then determined recursively (Altmann 1977, Bradley and Cracknell 1972) 
starting from those of Ln,. The results of Q 3 were checked by both methods; some 
additional tests (e.g. comparing the characters a posteriori) were also utilised. 

3. Results 

In this section for each line group L,  where L = Ln,, Lnm, Lnmm, Lnc, Lncc, L(2q),mc, 
Ln/m,  L(2q),/m or L(%), we give: (a) the character table, introducing the rep 
symbols and defining the ranges for their quantum numbers, and (b) the table of 
decompositions of the Kronecker products D @ D '  for all the inequivalent pairs D ,  
D' of reps of L. 

Tables (b) are triangular, in view of 0 0 0 ' - D ' @ D .  To simplify the notation, 
the length unit is chosen to coincide with the repeat length; hence the first Brillouin 
zone is defined by k E ( -T,  TI .  

3.1. The line groups isogonal to C, 

The line groups isogonal to C,, n = 1,2 ,  . . . are Ln,, p = 0,1,  . . . , n - 1. (Lno is usually 
denoted by Ln.) 

3.2. The line groups isogonal to C,, 

The line groups isogonal to C,, are Lnm and Lnc for n = 1 ,3 ,5 , .  . . and Lnmm, Lncc 
and L ( 2 q ) p c  for n = 24 = 2, 4, 6 , .  . . . For the non-symmorphic line groups (Lnc, 
Lncc and L(2q),mc) we tabulate the decompositions only for k + k'  j i  (-n, n] ,  because 
for k +  k ' E  ( -T ,  7r] they coincide with those of the symmorphic line groups (Lnm and 
Lnmm). 



Selection rules for polymers ; I 3939 

Table l(a). The characters 
n - 1 .  H e r e s s O , l ,  . . . ,  n 
the integral values from the 

of the reps of the line groups Ln,, n = 1 , 2 ,  . . . , p = 0, 1, . . . , 
- 1,  t = 0, *l, . . . , a = 2n/n ,  k E (-n, n ]  and m takes on all 
interval ( - 4 2 ,  n/2]. 

Rep  (C, It + s d n )  

kAm exp(imsa) exp[ik(t +sp/n)] 

Table l(6). Decomposition of the Kronecker product DBD' of reps of Ln,. Notice that 
for p = 0 the index /L becomes independent on k + k'. 

K and cc depend on k + k '  and m + m'  as follows: 

k i k '  m + m '  K w 

k + k ' i 2 n  
k i k ' i 2 n  
k + k ' + 2 5 7  
k + k ' i 2 5 7  

k + k '  
k + k '  
k + k '  

k + k'-257 
k + k ' - 2 n  
k i k I - 2 ~  
k + k I - 2 ~  

m + m '  - p + 2n 
m + m ' - p + n  
m + m ' - p  
m + m ' - p - n  

m + " i n  
m i m '  
m i " - n  

m + m ' + p + n  
m + m ' + p  
m + m ' i p - n  
m + m ' i p - 2 n  

Table t (o) .  The characters of the reps of the line groups Lnm, n = 1, 3 , .  . . and Lnmm, 
n = 2 ,  4, .  . . . For s, 1, a and k see the caption of table l(a); m is an integer such that 
1 6 m s (n - 1)/2. The two-dimensional reps appear only for n 3 3. 

~ ~~ ~ 

k A  o exp(ikf) exp(ik0 
k B o  exp(ikt ) -exp(ikt) 
k E m ,  - m 2 cos(") exp(ikt) 0 

and only for n = 2q = 2 , 4 , 6 ,  , . , 

kA, (- l)'exp(ikl) 
kBq (- l)'exp(ikt) 

(- l)'exp(ikr) 
-(- l)'exp(ikf) 
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Table 2(C). Decomposition of the Kronecker product D Q D ‘  of reps of Lnm and Lnmm. 
The reps k A q  and k B q  appear only in the Lnmm groups and the heavily framed part of 
the table corresponds only to these groups. 

S = q - m ‘  

k + k ’ + 2 a  i f k + k ‘ ~ ( - 2 a ,  -a] 

k + k ’ -2a  
if k + k ’ E ( -a, a] 

if k + & ’ E  (a, 271 

.Ao+,Bo+,Eu,-, if m = m ’ # n / 4  

xEv,-v +.A, + 3,, 
.Ao+,Bo+.A,+,B, i f m  = m ’ = q / 2 ( o n l y f o r n  =2q=4,8, . .  , j  

if m # m’  # (n/2j-m 

if m = q - m’  # q/2 (only for n = 2q = 4 6 ,  . . .) (i) k E m . - m @ k ’ E m ’ . - m ’ =  

with 

if m+m’E[2,n/2) if m -m’E[l ,  n/2- 1) 
n - m  -m’  if m +“E ( 4 2 ,  n - 11 -m+m’  i f m - m ’ ~ ( - n / 2 + 1 , - 1 ] .  

Table 3(0).  The characters of the reps of the line groups Lnc, n = 1,3, . . . and Lncc, 
n =2, 4,. . , . For s, t, a and k see the caption of table l (a ) ;  m is an integer such that 
1 s m s (n - 1)/2. The two-dimensional reps appear only for n 3 3. 

Rep ( a t )  (0°C; I f  + b 
k A  0 exp(ikt) exp[ik (I  + 91 
tB o exp(ikt ) -exp[ik (t + 
k E m . - m  2 cos(”) exp(ikt) 0 

and only for n = 2q = 2,4,. . . 

kAq (-1)’ exp(ikt) (-1)’ exp[ik(r ++)I 
kBq (-1)’ exp(ikt) -(-I)’ exp[ik(t +$)I 
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Table 3(b). Decompositions of the Kronecker products of reps of Lnc and Lncc. For 
k + k f E ( - r , v ] u s e t a b l e 2 ( b ) a n d l e t  K =  k+k ' .  For k + k ' @ ( - v , ~ ] t h e r e s u l t s a r e g i v e n  
below; 6, k,  U and (i) as in table 2(b). The heavily framed part corresponds only to Lncc. 

k + k ' + 2 n  if k + k ' E  (-2.rr, - P I  
k + k ' - 2 v  i f k + k ' ~ ( ~ r , 2 v ]  ' 

K = [  

Table 4(a). The characters of the reps of the line groups L(2q),mc, q = 1, 2 , .  . . . Here 
r = 0, i l ,  , . . , I = 0, 1,. . . , q - 1, k E (-r, r], a = n/q and m = 1 , .  . . , q - 1. In the case 
of L21mc there are no two-dimensional reps. 

~~ 

kAo exp(ikt) exp[ik(t +$)I exp(ikt) exp[ik ( t  + 91 
kBo exp(ikt) exp[ik ( t  + 4)] -exp(ikt) -exp[ik ( t  + i)] 
kEm,+, 2 cos(2mra) exp(ikt) 2cos[m(2r+ l)a]exp[ik(t+4)] o 0 
kAq exp(ikt) -exp[ik (I + $11 exp(ikt) -exp[ik ( t  + $11 
kBq exp(ikt) -exp[ik ( t  + $11 -exp(ikt) exp[ik ( t  + $1 

3.3. The line groups isogonal to Cnh 

The line groups isogonal to Cnh are Ln/m,  n = 1 ,  2,. . , and L(2q),/m, q = 1,  2, , . . . 
Notice that for n odd, Ln/m is also denoted by L(2n). 

3.4. The line groups isogonal to SZn 

The line groups isogonal to SZn are Le, n = 1,  3 ,  . . . and L(2n), n = 2, 4, . . . . 
Analogously to the case of the Lnc, Lncc and L(2q),mc line groups, we have to 
distinguish here whether m +"E (-n/2,  n /2]  or not. 

- 

4. Discussions 

The selection rules given in 9: 3 can be interpreted as conservation laws for certain 
physical observables. 

First, the translation symmetry implies that kf  = ki + k, if ki + k, E (-T, T ]  

( a  'normal' process), k f  = ki  + k, + 0 if ki + k, E ( - 2 ~ ,  - T I  and kf = ki + k, - Q if 
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Table 4(b). Decomposition of the Kronecker products of reps of L(2q),mc. For k + k '  E 
(-a, a] use table 2(b) and let K = k + k'. For k + k'k ( -w,  a] the results are given below. 

k + k ' + 2 a  
k + k ' -  2 a  

if k + k f E  (-277, -a] 
if k + & ' E  (a, 2 a ]  

6 = q - m  and K = (  

xEws-u +.A, + .B, 

J o  + .Bo+ xEv,-w 
.Ao+.B0+,A,+.B, ifm = m ' = q / Z ( o n l y f o r q = 2 , 4 ,  . . . )  

if m = m' # q/2 
if m # m ' #  q - m 

if m = q - m ' # q / Z  
+ MEv,-v (ii) kE,,,,-m@k,E,,,.,-,, = 

with 

q - m - m '  
m + m ' - q  

if m +m'E [ l ,  q - 11 
if m + m ' E [ q +  1,2q -21 

q - m ' + m  

q - m + m' 

if m - m ' E  [-q + 2 ,  -11 
if m - m'  E [I, q - 21. 

v = {  .={ 

Table 5(a). The characters of the reps of the line groups Ln/m, n = 1, 2 , .  . . . For s, t ,  
a and m see the caption of table l ( a ) ;  k E (0, a]. 

0'4: exp(isma ) *exp(imsa) 

A: (-1)' exp(imsa * (- 1)' exp(imsor ) 
-:Em 2 exp(imsa) cos(kt) 0 

Table 5(b).  Decomposition of the Kronecker products of reps of Ln/m. 

OA, 
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A = r r - k '  

m + m ' + n  i f m + m ' ~ [ - n + l , - n / 2 ]  
if m + m ' E  ( 4 2 ,  n/2]  
if m + m ' ~ ( n / 2 ,  n ]  m + m ' - n  

(&; + &; + +A, if k = k '  = 7712 
if k = k '  # 7712 
if k = B - k ' #  k '  
if k # k ' #  a - k '  

with 

'= {k - k '  
k ' - k  if k - k 'E  (-a, 0) k + k '  if k + k 'E  (0, a )  

K = (  2 a  - k  - k '  if k + k ' E ( a ,  2 ~ )  if k - k ' E  (0, a) 

Table 6(a) .  The characters of the reps of the line groups L(29),/m, 9 = 1, 2 , .  . . . Here 
r =O, * l , ,  . , , a = a/9, r = 0 ,  1 , .  , . , 9  - 1, m = -9 + 1, -9 + 2 , .  , . ,9 ,  w = 1, 2 , ,  . . , 9  and 
k E (0, a]. 

Reps (C?Ir) (c:;" It +;) (uhC::l-t) iuhc:;+'l-r-B 

&,, 2 cos(kt) exp(i2rma) 2 cos[k( t+~)]exp[ i (2r+  l ) m a ]  0 0 
37 2(-1)' exp(i2rwa) 0 0 0 

9 exp(i2rma ) exp[i(2r + l ) m a ]  fexp(i2rma) *exp[i(2r + l ) m a ]  

Table 6(b). Decompositions of the Kronecker products of reps of L(Zq),/m. 

m + m ' + 2 q  i f m + m ' ~ [ - 2 9 + 2 , - q l  

m + m ' - 2 q  

w + m ' + q  

w + m ' - q  

p =  m + m '  if m +m'E[- -q  + 1.91 
if m +m'E[q  + 1 , 2 q ]  

if w + m '  E [-q + 2 , 0 ]  
if w + m ' e [ l , q ]  
if w + m'E [q + 1 , 2 q ]  

i 
+"A; +,E:-' if k = k '  = a12 

[-;E,, + -:Ep if  k # k ' #  a- k 
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with 

k ' -  k i f & - k ' E ( - a , O )  if k + k ' E ( 0 ,  a) 
= { k  - k '  if k - & ' E  (0, a) 2 a  - k - k'  if k + & ' E  (a. 2 a )  

m + m ' +  2q 
m + m ' + q  
m +m' 
m + m ' - q  

if m +m'E [-2q + 2, -41 
if m +m'E [ -q + 1 ,0 ]  
if m + m' E [l, q] 
if m + m ' E [ q  + 1,2q].  

(v) EE=-'@-;:E,,,=-*E A P + - " E  A 0-q 

where A = ir - k '  

w + m ' + q  if w + m ' ~ [ - q + 2 , 0 ]  

w + m' - q if w + m'E [q + 1 , 2 q ] .  
p =  w + m '  if w + m ' ~ [ l , q ]  

i fw+w'E[2,q]  

i 
(vi) ,,.E~-~@,,.E::-' =dA:+d~;+dA:-,+dA;-, 

Table 7(a). The characters of the reps of the line groups Ln', n = 1, 3 , .  . . and L ( z ) ,  
n = 2 , 4 ,  . . . . For s, f, a and m see the caption of table l ( a ) ;  k E (0, a]. 

Reps (Cif) (UhC,"C:, I - 0 

Table 7(b) .  Decompositions of the Kronecker products of reps of LA (nodd) and L(%) 
(n even). The results for m +"E ( - n / 2 ,  n / 2 ]  differ from those for m + m ' k ( - n / 2 ,  n / 2 ]  
and hence each case is discussed separately. Here A = a - k '  and (iii) is given in table 5(b). 

For m +m'E ( - n / 2 , n / 2 ]  

where p = m + m'. 
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For m + m ’ k  ( - n / 2 ,  n / 2 ]  

where 

m + m ’ + n  

m + m ‘ - n  

if m + m ‘ E ( - n ,  - n / 2 ]  

if m + m ’ E  ( n / 2 ,  n ] .  CL = (  

ki + k ,  E (T, 2 ~ 1  (‘Umklapp’ processes), where Q = 27r. Since the reps dk,  dk+Q and 
dk-Q are all equivalent, the quasi-momentump = Ak is conserved in either case; briefly, 

ki= k f  + k,  (3) 
where = means ‘equal modulo Q’ .  The result is valid also for the line groups isogonal 
to either C, or Cnv. However, the remaining ones contain elements which convert k 
into -k ,  and their reps are in general labelled by pairs { k ,  - k } ,  so that (3) has to be 
modified in that case. 

Let li), lf) and v be labelled by {k i ,  - k i } ,  {k f ,  - k f }  and {ku, -kv } ,  respectively; 
(ilulf) = o unless 

k f = k i + k u  or k f = k i - k u .  (4) 
Let us turn now to C,, the rotation through 27r/n around the chain axis. The 

corresponding quantum number is m, an integer from ( -n /2 ,  n / 2 ] ,  and the selection 
rule reads 

mf = mi +mu ( 5 )  
where = stands for ‘equal modulo n’. Hence the quasi-angular momentum 1 = Am is 
conserved; this conclusion is also valid for all the line groups which contain C, as a 
subgroup. 

However, in the Ln, line groups rotations are coupled to translations and reps are 
labelled by pairs { k ,  m } ;  (i lvlf)  # 0 requires that 

k f = k i + k ,  and m f = m i + m u  (6) 

k f = k i + k , + Q  and m f = m i + m , + p  (7a ) 

for normal processes, or 

or 

kf  = ki + k,  - Q and mf=  mi + m u  -p  (76) 
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for Umklapp processes (= as in ( 5 ) ) .  Non-conservation of m in (7a, b )  is due to the 
fact that for p # 0, (C,/O) does not belong to Ln,. 

Finally, let us consider the parity with respect to the vertical mirror plane ay, 
distinguished by the symbols A (even reps) and B (odd reps). In the case of the Lnm, 
Lnmm and L(2q),mc line groups which contain ( ~ ~ 1 0 )  this parity is strictly conserved; 
for Lnc and Lncc, (avIO)BL and in Umklapp processes the parity is reversed. 
Analogously, the parity with respect to the horizontal mirror plane (indicated by 
the superscript i) is conserved in the L n / m  and L ( 2 q ) , / m  groups for which ( a h l o )  E L ,  
while it is reversed if m, + m u g  ( - n / 2 ,  n / 2 ]  in the L ( 5 )  groups which do not contain 

Few additional remarks might be of interest. First, for a particular physical process 
U is specified and hence its rep D, can be determined; the selection rules may then 
become even more restrictive. For example, in the case of direct optical absorption 
one has (BoioviC et a1 1981) k, = 0 and m, = 0, *1 so that the rules (6 ,7a,  h )  become 

(alllo). 

Ak = kf - k, = 0 and Am m - m ,  = 0 ,  *l. 

For special directions of incidence and polarisations of light further specifications are 
obtained, relevant for understanding dichroic effects in polymers. Next, some addi- 
tional restrictions may be obtained for degenerate reps via the Wigner -Eckart 
theorem. 

Notice also that the k = O  reps of a line group L coincide with the reps of the 
point group P isogonal to L ;  our tables thus contain the selection rules for the axial 
point groups, too. Finally, the Kronecker product is distributive with respect to direct 
matrix summation and hence the tables of 5 3 enable easy reduction of multiple 
Kronecker products like D @ D f @ D " ,  etc. 
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